工業(yè)廢水處理工藝詳解:設計計算與原理 1
一、預處理階段
原理:
預處理的主要目的是去除廢水中的大顆粒物、懸浮物、部分有機物等,以減輕后續(xù)處理工藝的負擔,提高廢水的可生化性。
設計:
1.格柵與篩網(wǎng)在廢水處理過程中扮演著至關重要的角色,它們作為預處理階段的關鍵組成部分,主要用于攔截和去除廢水中的大顆粒物以及漂浮物。為了滿足不同的處理需求和效果,設計時需要充分考慮格柵和篩網(wǎng)的尺寸、形狀及材質(zhì)等因素。格柵通常被安裝在廢水處理設施的入口處,其設計原則是確保能夠捕捉并阻止諸如樹枝、樹葉、塑料碎片等較大體積 的固體雜質(zhì)進入系統(tǒng)內(nèi)部,以防止后續(xù)設備遭受堵塞或損壞。根據(jù)廢水中可能存在的大顆粒物種類和數(shù)量,格柵的間隙大小應合理設置,既要保證能有效截留這些有害物質(zhì),又要避免因間隙過小而導致廢水流通受阻,影響處理效率。篩網(wǎng)則是一種更為精細的篩選工具,通常在格柵之后使用,進一步分離和去除廢水中的小微粒、懸浮物以及部分膠體物質(zhì)。篩網(wǎng)的目數(shù)(單位面積上的孔洞數(shù)量)是衡量其過濾精度的重要指標,不同規(guī)格的篩網(wǎng)可以應對不同濃度的廢水處理需求。較高的目數(shù)意味著更小的孔徑,能夠攔截更細微的物質(zhì),從而減輕后續(xù)工藝負荷,保障整個處理流程的穩(wěn)定運行。
2.沉砂池:其設計目的在于通過重力沉降原理有效地去除廢水中的無機顆粒。在實際應用中,沉砂池主要采用平流式或旋流式兩種主流構造。平流式沉砂池結構簡單,運行穩(wěn)定,廢水在其內(nèi)部以均勻速度水平流動,通過緩慢的水流速度給予顆粒足夠的沉降時間,使得廢水中的無機顆粒(如砂粒、石子等)在重力作用下自然沉淀到底部,從而實現(xiàn)顆粒與廢水的有效分離。而旋流式沉砂池則利用了離心力的作用,廢水在池體內(nèi)高速旋轉(zhuǎn)流動,產(chǎn)生強烈的離心效應,使得密度較大的無機顆粒被甩向池壁,*終在池壁處形成濃縮的砂層,達到去除廢水中無機顆粒的目的。
3.混凝沉淀/氣浮工藝是一種常用的水處理方法,尤其是在工業(yè)廢水和市政污水處理過程中。該工藝的核心在于利用混凝劑的選擇性吸附和電性中和作用,將廢水中的膠體顆粒、懸浮物以及部分可溶性雜質(zhì)轉(zhuǎn)化為不可溶性大分子化合物。當投加到廢水中的混凝劑(如聚合氯化鋁、聚丙烯酰胺等)與膠體粒子接觸時,會發(fā)生一系列復雜的物理化學反應。例如,聚合氯化鋁作為一種常見的無機混凝劑,其水解產(chǎn)物能強烈吸附在膠體顆粒表面,并通過壓縮雙電層、電性中和以及吸附架橋等機制,使原本穩(wěn)定分散的膠體失去穩(wěn)定性,進而凝聚成大顆粒絮體。而聚丙烯酰胺(PAM)等有機混凝劑則主要通過分子鏈上的活性基團與膠體粒子發(fā)生吸附作用,形成大的絮凝體。這些經(jīng)混凝劑作用形成的較大絮體,具有較高的沉降性能,能夠在重力作用下快速下沉,實現(xiàn)固液分離。在混凝沉淀過程中,通過設置專門的沉淀池,利用沉淀池中的絮體顆粒在重力作用下自然沉降,從而將澄清的液體與含絮體的污泥分離。沉淀池通常采用合適的機械攪拌或氣流擾動以促進絮體成長和下沉,同時通過排泥裝置定期排出污泥。對于某些難以沉淀的輕質(zhì)絮體或微小懸浮物,可以采用氣浮技術進行去除。氣浮裝置利用微氣泡發(fā)生器產(chǎn)生大量微小氣泡,這些氣泡與廢水中的絮體發(fā)生黏附作用,使絮體上浮至水面形成浮渣,從而實現(xiàn)與水體的有效分離。通過刮渣裝置定期清理浮渣,可確保氣浮裝置連續(xù)穩(wěn)定運行。
計算與公式:
l混凝劑投加量的**計算是水處理過程中至關重要的步驟,這一環(huán)節(jié)通常涉及到復雜的化學動力學和化學反應機理。在實際操作中,為了確定*佳的混凝劑投加比例,必須通過嚴謹?shù)膶嶒灧椒ㄟM行驗證和優(yōu)化。通常采用的方法是在實驗室環(huán)境下進行模擬水處理燒杯實驗或利用小試裝置進行系統(tǒng)性測試。
l沉淀池的設計核心是依據(jù)沉淀效率公式來**計算和配置各項關鍵參數(shù),以確保廢水中的固體顆粒能在特定時間內(nèi)有效沉淀。該公式為:v = Q/A,這是設計沉淀池的基礎理論依據(jù)。其中,v代表沉淀池內(nèi)的水流速度,它是影響固體顆粒沉淀效果的重要因素;Q表示廢水的流量,即單位時間內(nèi)進入沉淀池的廢水體積;A則是沉淀池的有效面積,即能夠提供固體顆粒充分沉淀的水面面積。通過這一公式,設計者可以科學地計算出沉淀池的*佳水流速度,從而保證廢水中的固體顆粒在流經(jīng)沉淀池時能夠有足夠的時間和空間進行自然沉淀,提高污水處理的效果和效率。
二、厭氧處理
原理:
厭氧處理是一種利用厭氧微生物在嚴格無氧或低氧環(huán)境下將有機物進行分解代謝的技術過程。在這一過程中,厭氧**和古菌等微生物通過其獨特的生物化學途徑,將復雜的有機污染物轉(zhuǎn)化為較為簡單的物質(zhì),并在此過程中產(chǎn)生甲烷(CH4)和二氧化碳(CO2)等氣體。其中,甲烷是一種重要的可再生能源,而二氧化碳則是主要的溫室氣體之一。
在厭氧消化過程中,廢水中的大部分有機物,包括但不限于碳水化合物、蛋白質(zhì)、脂肪以及合成有機物等,在厭氧微生物的作用下被分解和轉(zhuǎn)化。這些有機物首先被微生物細胞吸收并轉(zhuǎn)化為細胞物質(zhì)或貯存在細胞內(nèi),隨后在特定的代謝途徑中經(jīng)過水解、發(fā)酵、產(chǎn)氫和產(chǎn)乙酸等階段,*終生成甲烷和二氧化碳。
該技術不僅能夠有效去除廢水中的有機污染物,實現(xiàn)廢水的資源化利用和無害化處理,而且由于厭氧微生物對某些難降解有機物的獨特降解能力,使得一些傳統(tǒng)好氧處理難以解決的有機廢水可以通過厭氧工藝得到有效處理。
設計:
在設計污水處理設施時,厭氧反應器作為核心組件之一,其設計和選擇對于整個處理過程的效率和效果具有關鍵性影響。常用的厭氧反應器類型包括UASB(上流式厭氧污泥床)反應器和IC(內(nèi)部循環(huán))厭氧反應器等。
UASB反應器是一種通過自然循環(huán)和內(nèi)部循環(huán)相結合的方式實現(xiàn)污泥與污水充分接觸反應的設備。設計UASB時,需要綜合考慮反應器的容積大小,這直接關系到能處理的污水流量和處理時間;污泥負荷,即單位時間內(nèi)單位體積污泥床所能承受的有機污染物量,過高可能導致污泥沉降性能下降、處理效果變差,而過低則可能造成設備閑置空間過大、投資成本增加;水力停留時間,即污水在反應器內(nèi)的平均停留時間,影響到污水與污泥混合接觸的充分程度以及反應時間,從而影響有機物的去除效率。
IC厭氧反應器則是一種集成了UASB和其他類型反應器優(yōu)點的高效厭氧處理裝置,其特點在于通過特殊的結構設計實現(xiàn)了污泥和污水的高效混合以及內(nèi)部循環(huán)流動,以增強反應效率和生物質(zhì)利用能力。在設計IC反應器時,同樣需要仔細確定反應器的容積、污泥負荷以及水力停留時間等關鍵參數(shù),以保證反應器能夠在滿足污水處理要求的同時,實現(xiàn)*優(yōu)的經(jīng)濟運行效果。
計算與公式:
l污泥負荷(F/M)是污水處理過程中一個重要的參數(shù),它用于衡量反應器內(nèi)微生物對有機物的轉(zhuǎn)化能力。F/M的計算公式為:F/M = Qs/(VXSV),這個公式中,Qs代表進入反應器的有機負荷,通常以化學需氧量(COD)為單位,表示反應器單位時間內(nèi)需要去除的有機物的量;V則是反應器的有效容積,即反應器內(nèi)部可供微生物生長和代謝的空間體積;XSV則是污泥濃度,它表示反應器內(nèi)混合液中懸浮固體(VSS)的濃度,VSS通常包括微生物菌體、部分難降解有機物以及無機顆粒等。通過這個公式,可以計算出污泥負荷,從而了解反應器內(nèi)微生物對有機物的處理效率。
l水力停留時間(Hydraulic Retention Time,簡稱HRT)是污水處理工藝設計中的一個關鍵參數(shù),它反映了廢水在生物反應器中平均停留的時間。計算HRT的公式簡單易懂,即HRT = V/Q,其中V代表反應器的有效容積,也就是反應器內(nèi)部能夠進行有效處理的空間體積;Q則是廢水的流量,表示單位時間內(nèi)進入反應器的廢水體積。通過將這兩個數(shù)據(jù)相除,即可得出廢水在反應器內(nèi)的平均停留時間,以小時(h)為單位表示。量。
三、AO(反硝化-硝化)處理
原理:
AO工藝,全稱為缺氧-好氧工藝,是一種在污水處理中應用廣泛的生物脫氮除磷技術。該工藝巧妙地結合了好氧和缺氧兩個不同的生物反應過程,以實現(xiàn)對污水中的有機物和氮化合物的高效去除。
在好氧段,由于充足的氧氣供應,好氧微生物能夠進行有氧呼吸,從而有效降解污水中的有機物,如生活污水、工業(yè)廢水等。這一過程中,有機物被好氧微生物分解為簡單的無機物,如二氧化碳和水,同時,氨氮在好氧條件下通過亞硝酸鹽菌和硝酸鹽菌的作用逐步氧化為亞硝酸根離子和硝酸根離子。
而在缺氧段,由于溶解氧濃度較低,厭氧或微缺氧環(huán)境有利于反硝化**的生長與活動。反硝化**在這種條件下,以硝酸鹽(NO3-)作為電子受體,將硝酸鹽還原為亞硝酸鹽、一氧化氮(NO)和*終產(chǎn)物氮氣(N2),從而實現(xiàn)污水中氮的去除。這種利用硝酸鹽進行反硝化脫氮的方式,不僅提高了氮的去除效率,還避免了因過度氧化導致的磷酸鹽積累問題。
設計:
AO工藝,即厭氧-好氧工藝,是一種常用的污水處理生物脫氮除磷工藝。其主體部分通常包括一個厭氧池和一個好氧池,這兩個池子依次串聯(lián)連接,共同構成AO系統(tǒng)。在設計該系統(tǒng)時,需要綜合考慮多個關鍵參數(shù)以確保污水處理效果和系統(tǒng)穩(wěn)定性。其中,池體容積是基礎數(shù)據(jù)之一,它依據(jù)污水進水流量、污水水質(zhì)指標(如BOD、COD、氨氮、磷等)、設計水溫以及預期的污泥產(chǎn)率等因素進行合理計算。
曝氣量則是影響生物反應過程的重要因素,好氧池內(nèi)充足的曝氣供應不僅能保證活性污泥中好氧微生物的正常生長代謝,還能有效推動混合液循環(huán)流動,防止污泥沉積;而缺氧池中的微曝氣或輕微攪拌則有利于兼性***群的活性發(fā)揮和反硝化作用的進行。
混合液回流比也是關鍵設計參數(shù),它涉及到系統(tǒng)內(nèi)污泥齡、污泥負荷以及脫氮除磷效率的平衡。適當?shù)幕亓鞅瓤梢詫⒑醚醭刂械倪^量剩余污泥通過內(nèi)回流管道輸送到缺氧池,從而調(diào)節(jié)系統(tǒng)內(nèi)的污泥濃度,并促進污泥齡的合理分布,有利于實現(xiàn)高效的生物脫氮除磷作用。。
計算與公式:
l曝氣量計算是污水處理生物反應器工藝設計中的關鍵環(huán)節(jié),特別是在活性污泥法中的好氧池處理階段。曝氣的主要目的是向混合液中充分供氧,以滿足微生物生長繁殖對溶解氧的需求,同時也要防止因過度曝氣導致能耗浪費或污泥沉降性能下降。在好氧池內(nèi),通常要求維持一個適宜的溶解氧濃度,一般為2-4毫克/升,以滿足好氧微生物的正常生理活動。這個濃度要**基于特定的污水處理工藝條件和季節(jié)變化等因素考慮的。根據(jù)這一要求,需要借助氧轉(zhuǎn)移效率公式來**計算曝氣量。
l混合液回流比計算:混合液回流比是生物脫氮除磷工藝中的關鍵參數(shù)之一,它直接影響著生物反應器內(nèi)的污泥濃度、微生物種群分布以及整體處理效果。在計算混合液回流比時,首先需要根據(jù)設定的脫氮效率目標,結合實際運行工況、水質(zhì)特性(如氨氮、總氮濃度等)和污水廠的設計負荷,通過試驗測定或參考行業(yè)公認的經(jīng)驗公式,來確定一個合適的混合液回流比。